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Introduction 
Computer security exists to facilitate trust, and a fundamental part of security is system integrity. 
Unfortunately, computer systems are rife with vulnerabilities that can be used to compromise 
them, and the endless stream of security patches serve both as immunization against as well as 
recipes for exploitation. System administrators are therefore in recurring races to patch before 
attackers exploit. 

Even with a good patching story, a system, once compromised, is often costly to get back to a 
secure state. A lack of trustworthy audit trails may prevent discovering the initial cause of the 
breach resulting in inadequate mitigations. Regrettably, modern systems also offer many places 
to hide and gain malware persistence. The technical challenges involved in maintaining system 
integrity with a relatively high assurance prevent most organizations from doing so. 

The following established concepts have security properties that are orthogonal to one another, 
each able to assist in ensuring and maintaining integrity. Through their systematic composition, 
new security properties emerge that are the subject of this paper. 

A ​key ceremony​ is a procedure where a key pair is generated for later use as a signing key. It 
may take place in a vault and involve multiple witnesses, a log book of events, a video 
recording, and so on. 

Physical write-protection of firmware​ ensures integrity of the first instructions executed after 
a hard reset. 

Tamper detection​ is used to trigger defensive measures if a security boundary, such as a 
server casing, is breached. 

Reproducible builds​ is the process of deterministically compiling source code in a way that 
ensures a given source code always results in the same bit-identical artifact. 

Measured and verified boot​ are security features that measure and verify parts of the boot 
chain respectively, often through the use of a TPM. Boot chain measurements may then be 
used by the TPM to provide ​remote attestation​. 

Immutable infrastructure​ is an approach to system administration that advocates rebuilding 
and reprovisioning system images rather than modifying already running systems using, for 
instance, SSH. Once deployed, an immutable system is never modified, it is only replaced. 



Certificate Transparency​ is a framework intended to monitor and audit the issuance and 
existence of SSL/TLS certificates. It consists of a signed and publicly auditable append-only log, 
a log monitor, and a log auditor. 

Through the systematic composition of these concepts, we now introduce System Transparency 
– a novel design approach for computer systems intended to offer deterrence, prevention, and 
detection of attacks by combining a provisioning ritual, write-protected firmware, tamper 
detection, reproducible builds, remote attestation, immutable infrastructure, and a signed and 
auditable append-only log. Used correctly, System Transparency will prevent malware 
persistence, provide an extensive and trustworthy audit trail, and eventually self-heal after 
compromise. Within certain limitations it can be used to prove to the owner, system 
administrator, user, or a third party exactly what is currently running on the system and what it 
has been permitted to run in the past. 

System Transparency 
System Transparency begins with a provisioning ritual similar to a key ceremony, in the sense 
that it is a meticulously executed procedure with an audit trail. During this ritual, the boot ROM 
on the target platform is reprogrammed with firmware containing hardware initialization code as 
well as public keys for verification of the next boot stage. At least one key should belong to the 
system owner, and at least one key should belong to a signed append-only log similar to a 
Certificate Transparency Log. Ideally the log is run by an organization independent from the 
system owner. 

The source code for the firmware, as well as all other artifacts executed by the platform, must be 
available to parties auditing the running system. Furthermore, all artifacts must be reproducibly 
built, as otherwise a strong link wouldn’t exist between source code and artifact. 

The goal of the provisioning ritual is to convince future auditors that the stated hardware 
specifications are correct; that the boot ROM was programmed with an artifact with a specific 
checksum; and, finally, to tie the platform to a newly generated public key contained in the 
platform TPM. Assurance that the platform has not been tampered with after the provisioning 
ritual is provided by tamper detection switches connected to the casing and TPM; through the 
use of an enclosure PUF; or similar measures. 

After a hard reset, the platform initializes hardware and proceeds to verify the next boot stage. 
Verification of the next boot stage by using one or more keys controlled by the system owner 
ensures that only system images approved by the owner can run. Verification by using at least 
one key only used in a transparency log context ensures that only artifacts that have been 
submitted to the transparency log will run on the platform. Artifacts might be submitted directly to 
the transparency log or indirectly by submitting its checksum. As a proof-of-concept, one could 
piggyback on existing Certificate Transparency Logs by registering a certificate with a Common 
Name of e.g. checksum.transparency.your-domain.tld. 



 
In order to offer correct remote attestation, each stage of the boot chain must be measured into 
the TPM before execution. Each stage that needs to load further stages must also verify those 
stages using keys from the system owner as well as keys used by a transparency log. 

Finally, System Transparency requires that the system executes artifacts that are immutable in 
the sense that they do not offer interactive arbitrary access. Crucially, it must not offer an 
avenue to change system behavior in ways that can not be predicted by inspection of artifacts in 
the transparency log. For instance, if a system image offers SSH access, a malicious system 
owner might change data processing in ways that break the privacy policy it has marketed to its 
users. A system correctly designed for System Transparency would require the system owner to 
create a new artifact containing the malicious modifications, submit it to the append-only 
transparency log, and finally deploy it. Such deployment requirements might also deter third 
parties from applying legal pressure or otherwise force an organization to compromise system 
integrity and thereby the security and privacy of its users. With sufficient tooling and auditing of 
the transparency log, strange updates would inevitably face scrutiny. 

Conclusion 
We have described System Transparency – a novel design approach to ensure and maintain 
system integrity which offers emergent security properties through systematic composition of 
orthogonal security technologies. It facilitates trust in the hardware and initial state of the system 
through a provisioning ritual and tamper detection which together with a TPM and firmware 
write-protection establishes the root-of-trust as well as prevents malware persistence. 

The requirements of reproducible builds in combination with immutable infrastructure deter and 
prevent malicious modification during the build stage as well as during runtime. The 
requirements of remote attestation of the boot chain in combination with a transparency log 
provide assurances of the current system configuration, as well as an audit trail of previous 
configurations. 

Finally, when a platform using System Transparency is compromised due to an unpatched 
application, it can simply reboot, load an updated system image, and attest its new, patched, 
and uncompromised boot chain to its system administrator or users. 

A proof-of-concept implementation is in progress. 

Future Work 
System integrity starts with the hardware and continues with the first instruction. Instead of 
keeping boot ROM and TPM separate, they might be combined into one for higher assurance of 
system integrity, provided the right components are used. 



System Transparency as a security architecture results in the entire system becoming a “white 
box” from a penetration testing approach. Assuming the system is intended to be publicly 
auditable, attackers will know exactly which software is running, which versions, and its 
configurations. The impact of this should be investigated further. 

The details of the transparency log need to be figured out. Binary Transparency exists as 
concepts in various flavors, but append-only logs in the context of System Transparency are 
slightly different. 
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